Search results for "Nonsense-mediated decay"

showing 6 items of 6 documents

NMD-Based Gene Regulation—A Strategy for Fitness Enhancement in Plants?

2019

Abstract Post-transcriptional RNA quality control is a vital issue for all eukaryotes to secure accurate gene expression, both on a qualitative and quantitative level. Among the different mechanisms, nonsense-mediated mRNA decay (NMD) is an essential surveillance system that triggers degradation of both aberrant and physiological transcripts. By targeting a substantial fraction of all transcripts for degradation, including many alternative splicing variants, NMD has a major impact on shaping transcriptomes. Recent progress on the transcriptome-wide profiling and physiological analyses of NMD-deficient plant mutants revealed crucial roles for NMD in gene regulation and environmental response…

0106 biological sciences0301 basic medicinePhysiologyNonsense-mediated decayMutantMRNA DecayPlant ScienceComputational biologyBiology01 natural sciencesTranscriptome03 medical and health sciencesSpecies SpecificityGene Expression Regulation PlantGene expressionPlant Physiological PhenomenaRegulation of gene expressionRNA quality controlGene Expression ProfilingAlternative splicingCell BiologyGeneral MedicinePlantsNonsense Mediated mRNA DecayAlternative Splicing030104 developmental biologyTranscriptome010606 plant biology & botanyPlant and Cell Physiology
researchProduct

Multifactorial and Species-Specific Feedback Regulation of the RNA Surveillance Pathway Nonsense-Mediated Decay in Plants

2018

Abstract Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that detects aberrant transcript features and triggers degradation of erroneous as well as physiological RNAs. Originally considered to be constitutive, NMD is now recognized to be tightly controlled in response to inherent signals and diverse stresses. To gain a better understanding of NMD regulation and its functional implications, we systematically examined feedback control of the central NMD components in two dicot and one monocot species. On the basis of the analysis of transcript features, turnover rates and steady-state levels, up-frameshift (UPF) 1, UPF3 and suppressor of morphological defects on genitalia (SMG)…

0106 biological sciences0301 basic medicinePhysiologyRNA StabilityNonsense-mediated decayArabidopsisPlant ScienceBiology01 natural scienceslaw.inventionDephosphorylation03 medical and health sciencesSpecies SpecificityGene Expression Regulation PlantlawArabidopsis thalianaFeedback PhysiologicalRegulation of gene expressionArabidopsis ProteinsMechanism (biology)RNACell BiologyGeneral MedicineRNA surveillancebiology.organism_classificationNonsense Mediated mRNA DecayCell biology030104 developmental biologyRNA PlantSuppressorCarrier ProteinsRNA Helicases010606 plant biology & botanyPlant and Cell Physiology
researchProduct

Minimum Free Energy Based Evaluation of mRNAs Secondary Structures Constructed by 18 Clinically Significant Exonic Single Nucleotide Polymorphisms (S…

2015

Clinically significant 18 Single Nucleotide Polymorphisms (SNPs) from exon regions of Retinoblastoma gene (RB1) were analyzed to find out the structural variations in mRNAs. Online bioinformatic tools i.e., Vienna RNA, RNAfold were used for secondary structure analysis of mRNAs. Predicted minimum Free Energy Change (MFE) was calculated for mRNAs structures. It has been observed that the average of predicted MFE value from 13 nonsense mutations was higher (0.76 kcal/mol) in comparison to 5 missense mutations. Presumably, 13 nonsense mutations are responsible for Nonsense Mediated mRNA Decay (NMD), therefore, excluded from haplotype analysis. From the statistical analysis all the thermodynami…

GeneticsExonNonsense mutationHaplotypeNonsense-mediated decaySNPRNAMissense mutationSingle-nucleotide polymorphismBiologyBiochemistryMolecular biologyBiotechnologyAmerican Journal of Biochemistry and Biotechnology
researchProduct

Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress.

2013

The expression of ribosomal protein (RP) genes requires a substantial part of cellular transcription, processing and translation resources. Thus, the RP expression must be tightly regulated in response to conditions that compromise cell survival. In Saccharomyces cerevisiae cells, regulation of the RP gene expression at the transcriptional, mature mRNA stability and translational levels during the response to osmotic stress has been reported. Reprogramming global protein synthesis upon osmotic shock includes the movement of ribosomes from RP transcripts to stress-induced mRNAs. Using tiling arrays, we show that osmotic stress yields a drop in the levels of RP pre-mRNAs in S. cerevisiae cell…

OsmosisTranscription GeneticNonsense-mediated decaylcsh:MedicineYeast and Fungal ModelsMolecular cell biologyGene Expression Regulation FungalGene expressionProtein biosynthesisRNA PrecursorsRNA Processing Post-Transcriptionallcsh:ScienceOligonucleotide Array Sequence AnalysisCellular Stress ResponsesRegulation of gene expressionMultidisciplinarybiologyProtein translationExonsGenomicsCell biologyFunctional GenomicsMitogen-activated protein kinaseResearch ArticleRibosomal ProteinsSaccharomyces cerevisiae ProteinsOsmotic shockEstrès oxidatiuSaccharomyces cerevisiaeGenes FungalDNA transcriptionSaccharomyces cerevisiaeModels BiologicalGenètica molecularSaccharomycesModel OrganismsRibosomal proteinStress PhysiologicalBiologylcsh:RRNA stabilitybiology.organism_classificationMolecular biologyIntronsNonsense Mediated mRNA DecayKineticsRNA processingbiology.proteinlcsh:QGene expressionGenome Expression AnalysisProteïnesPloS one
researchProduct

Nonsense-mediated decay mechanism is a possible modifying factor of clinical outcome in nonsense cd39 beta thalassemia genotype

2012

Nonsense-mediated mRNA decay (NMD) is a surveillance system to prevent the synthesis of non-functional proteins. In β-thalassemia, NMD may have a role in clinical outcome. An example of premature translation stop codons appearing for the first time is the β-globin cd39 mutation; when homozygous, this results in a severe phenotype. The aim of this study was to determine whether the homozygous nonsense cd39 may have a milder phenotype in comparison with IVS1,nt110/cd39 genotype. Genotypes have been identified from a cohort of 568 patients affected by β-thalassemia. These genotypes were compared with those found in 577 affected fetuses detected among 2292 prenatal diagnoses. The…

Pediatricsmedicine.medical_specialtymedia_common.quotation_subjectNonsense-mediated decayNonsenseBeta thalassemiaBiologynonsense-mediated mRNA decay; beta-thalassemia; clinical outcame; beta-globin gene mutationsmedicine.diseaseGastroenterologynonsense-mediated mRNA decay beta-thalassemia beta-globin gene mutationsnonsense-mediated mRNA decay beta-thalassemia clinical outcame beta-globin gene mutations.Internal medicineGenotypemedicineDiseases of the blood and blood-forming organsRC633-647.5media_commonThalassemia Reports
researchProduct

Genome-wide chromosomal association of Upf1 is linked to Pol II transcription in Schizosaccharomyces pombe

2021

AbstractAlthough the RNA helicase Upf1 has hitherto been examined mostly in relation to its cytoplasmic role in nonsense mediated mRNA decay (NMD), here we report high-throughput ChIP data indicating genome-wide association of Upf1 with active genes in Schizosaccharomyces pombe. This association is RNase sensitive and it correlates with Pol II transcription and mRNA expression levels. While changes in Pol II occupancy were detected at only some genes in a Upf1-deficient (upf1Δ) strain, there is an increased Ser2 Pol II signal at all highly transcribed genes examined by ChIP-qPCR. Furthermore, upf1Δ cells are hypersensitive to the transcription elongation inhibitor 6-azauracil and display Po…

biologyTranscription (biology)RNase PNonsense-mediated decaySchizosaccharomyces pombebiology.proteinPhosphorylationRNA polymerase IIbiology.organism_classificationRNA Helicase AGeneMolecular biology
researchProduct